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1. Introduction1. Introduction1. Introduction1. Introduction    
All-pay auctions are a type of auction where the bidders simultaneously bid for prize(s) and pay their bids irrespective of the outcome. Because of its applicability in real life situations such as patent races, innovation tournaments, electoral contests, rent-seeking activities and legal disputes, the all-pay auction has become a popular area of research.  
The basic first-price all-pay auction (where a single prize is awarded to only the highest bidder) equilibrium under complete information is fully characterized by Baye et al (1990, 1996).1 They show that if there are unique bidders with highest and second-highest valuations for the prize, then a symmetric mixed strategy Nash equilibrium exists. For more than two bidders with the second-highest valuation, a continuum of asymmetric mixed strategy Nash equilibria exist. Also, the two highest valuation bidders randomize their bids from zero to the second-highest valuation and the other bidders bid zero. Only the highest valuation bidder earns a positive expected payoff. However, in their structure the size/ valuation of prize is not directly affected by the bid and hence the payoff is monotonically decreasing in own bids. Also, the highest bidder always wins the prize with certainty.  
There are situations when the size of the prize in an all-pay auction is affected by the bid. Real life examples include the dependence of a patent’s value on R&D expenditure, the relation of the amount of gain on lobbying expenses etc. Kaplan et al (2002) are the first to analyze this sort of problems. They construct an incomplete information model where the prize is separable in bidder-type. They derive conditions under which a decrease in prize value can increase bids. Kaplan et al (2003) construct a complete information model and consider ‘innovation time’ as the choice variable. Here a higher reward as well as a higher cost is incurred with a choice of lower time. The authors characterize equilibria under both symmetric and asymmetric valuation cases. Che and Gale (2006) model lobbying as an all-pay auction and take into account a possible cap on bidding. This structure can also be used for solving the problem of bid-dependent valuation where the choice variable positively influences the cost as well as the prize value.  
Recently, Bos and Ranger (2008) and Sacco and Schmutzler (2008) analyze all-pay auctions under complete information with a specific emphasis on the bid-dependent prize valuation. These independent works are closely related to the present analysis. Bos and 

                                                           1 See also Hilman and Riley (1989) 
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Ranger (2008) construct an all-pay auction where the prize value is increasing in own bids in a constant-returns-to-scale fashion. They make a strong assumption that makes the winning payoff monotonically decreasing in own bids. They characterize the unique mixed strategy Nash equilibrium, which is very similar to the one obtained by Baye et al (1996).  Sacco and Schumtzler (2008) construct an n-bidder model of an all-pay auction. They assume that the winning prize value is an increasing concave function of own bid minus the second highest bid and that the cost is convex. They find conditions under which a pure strategy Nash equilibrium can be obtained. However, to solve the mixed strategy equilibria, they make a strong assumption of monotonically decreasing payoff in bids. They also find equilibrium mixed strategies similar to those of Baye et al (1996).   
Siegel (2009a) constructs a general family of games called ‘all-pay contests’. This model provides a generic structure that incorporates the majority of the features of the previous analyses in the literature.2 Specifically, it is an n-bidder model under complete information where the bidders posses a degree of asymmetry in terms of their prize valuations and cost functions. In addition, the bidders choose a costly ‘score’ (similar to a bid) that monotonically affects the prize value. Siegel (2009a) gives a generic formula for the equilibrium payoffs of this type of auctions. But, even in this generic structure, the highest bidder wins a prize with certainty and the winning payoff is assumed to be monotonically decreasing in own bids. Siegel (2009b) is an extension of Siegel (2009a) where the author characterizes the equilibrium strategies and participation rules under similar assumptions.   
It is interesting to note two particular features of all the existing models: firstly, the highest bidder wins a prize with certainty- there is no possibility of no-win in any of the models; secondly, none of the models investigate the case when the winning payoff is not monotonically decreasing in own bids. Both the features of no-win and non-monotonicity of winning payoff are inconsistent with some of the real life phenomena that the all-pay auction framework is used to model. For example, in a patent race two firms can make costly investments in order to innovate a new product. But there is a chance that none of them is successful (Loury (1979)).3 In another case, two firms can expend resources to create prototypes of a product and place the prototype for a procurement auction. There is always a chance that the demand side governing body does not like any of the prototypes 

                                                           
2
 Gonzalez-Diaz (2008) also constructs a general structure to unify different contests including all-pay auctions. But the payoff, again, is assumed to be monotonically decreasing in own bids. 

3
 Nti (1997) incorporates the no-win possibility under a Tullock contest. 
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and rejects both. Interest groups may lobby a government agency to influence the details of regulations, yet regulations may be issued that do not favor any special interest. Che and Gale (2003) give examples of both kinds. Interestingly enough, under both cases the winning payoff may turn out to be non-monotonic in own bids. 4   
In the current article we construct a 2-bidder single prize all-pay auction model where there is a possibility that none of the bidders wins the prize and the prize value becomes increasing and concave in own bids. This results in non-monotonicity of the winning payoff in own bids. We find sufficient conditions for the existence of pure strategy Nash equilibria and fully characterize the unique mixed strategy Nash equilibrium when there are no pure strategy equilibria. 2222. Model. Model. Model. Model    

2222....1111    Construction of Construction of Construction of Construction of the the the the AllAllAllAll----pay Auction with pay Auction with pay Auction with pay Auction with NonNonNonNon----monotonic Payoffmonotonic Payoffmonotonic Payoffmonotonic Payoff    
There are two bidders 1 and 2 with initial value for a prize HI and HJ with HIK HJ L 0. The bidders place costly bids to win the prize and lowest bidder never wins the prize.  The bids are denoted as xIand xJ. There is a possibility that none of them wins the prize. We can explain this as a ‘No success’ case of innovation driven by nature or quality standard of the buying party in a procurement auction. We incorporate this by including a random threshold RM with known cumulative probability distribution G(. ) described by nature, where G(0) N 0, GO(.)Ng(.)L0, and GOO(.)NgP(.)Q0 .  The winner is determined by the highest bid that is higher than the random threshold RM. Irrespective of the result, the bidders bear cost according to the cost function C(. ). The cost function starts from origin, is increasing and weakly convex in own bids i.e., C(0) N 0, CO(.)Nc(.)L0, and COO(.)NcP(.)K0 . Hence, the payoff function (neglecting a tie) is written as:  

RS(TS, TUS) N VWS-X(TS)        if   TS L  YZT(TUS, [\ ) -X(TS)                           otherwise ]                               (2.1)  
The expected prize value for the winner becomes G(x^)H^-x^, if x^ L  xU^, where –t  is denoted as the bidder ‘not t’. In case of a tie in asymmetric initial value (HIL HJ), if both 

                                                           
4
 Another example of no-win is successful technological innovations that are not marketable. For example, jetpacks and teleportation were invented long back in 1961 and 1993, but because of non-marketability issues none of them gave any profit to the inventors. See Wilson (2007) for details.  
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bidders bid more than the random threshold (RM), then the highest initial value bidder, i.e., bidder 1 wins the prize. In the case of common initial value (HIN HJ), such a tie is resolved by a coin toss. Given the conditions, we can rewrite the payoff function as: 
RS(TS, TUS) N `a(TS)WS –X(TS)       if  (TS L  TUS)  or (TS N  TUS) and (WS L  WUS)  a(TS)  bcJ –X(TS)      if   (TS N  TUS) and (WS N  WUS)                              –X(TS)      Otherwise                                                  ]        (2.2)  
Let us call the payoff at the winning state as the winning payoff and denote the same for bidder t as dS(TS) . The losing payoff is: eS(TS) . Hence dS(TS) N a(TS)WS-X(TS) and eS(TS) N fX(TS).  Denote the game as g(1,2).  Also, call the graph of the winning (losing) payoff in the bid-payoff space as the winning (losing) curve.  

2.2 2.2 2.2 2.2 ClaimsClaimsClaimsClaims    aboutaboutaboutabout    the Shape of the the Shape of the the Shape of the the Shape of the Winning CWinning CWinning CWinning Curveurveurveurve 
Claim 1.Claim 1.Claim 1.Claim 1.   The winning curves for both players start from the origin and are strictly concave.  Proof: Given the assumptions a(0) N C(0) N 0 we get dS(0)N0, for t N 1, 2 i.e., the winning 
curves start from the origin. Further, note that 

hijc(kc)hkci N al��t��t- ��(TS) Q 0  as 

al����� an� ����� K 0� Hence, the winning curves are strictly concave�              m  
Claim 2.Claim 2.Claim 2.Claim 2.  If  no(p)qo(p) K WS then any winning payoff is non-positive.    
Proof:Proof:Proof:Proof:  The slope of the winning curve is  

hjc(kc)hkc N aO(TS�WS- Xo(TS)� Recall from Claim 1 that 
the winning curves start from the origin. If  no(p�qo(p�

K WS then starting from the origin ��laim 1� 

the slope of the winning curve is non-positive throughout the bi� range an� consequently 

any winning payoff is also non-positive�                        m   

Claim 3.Claim 3.Claim 3.Claim 3.   If  no(p)qo(p) Q WS, then starting from the origin the winning curve is inverted U-shaped 
with unique maxima and as bid increases, eventually the winning curve cuts the X-axis at a unique point and winning payoff becomes negative. Proof:Proof:Proof:Proof: Starting from the origin (Claim 1), as  no(p)qo(p) Q WS, the winning curve has positive 
slope at the origin (Claim 2). But as winning curves are strictly concave (Claim 1) slope declines as bid increases; also as al����� an� ����� K 0, eventually at some unique point  no(kc)qo(kc) N WS (follows from the uniqueness of a maximizer of a strictly concave function) and 
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the winning curve reaches a unique maximum. After that point,  no(kc)qo(kc) L WS and winning 
curve has a strictly negative slope. As a result, as TS increases winning curve declines and cuts the X-axis at a unique point and as TS increases further, dS becomes negative.            m 
Claim 4.Claim 4.Claim 4.Claim 4.   Starting with no-difference, dI and dJ diverge away from each other and the difference tends to the initial value difference (WI f WJ) as bid increases to infinity. Proof:Proof:Proof:Proof: From the properties of a(T), (dI f dJ)Na(T)(WI f WJ).  Hence, (dI-dJ)spN(WI f
WJ)a(T)sp N 0 . Also, h(jtUji)hkc N aO(TS)(WI f WJ)L0  and hi(jtUji)hkci N aOO(TS)(WI f WJ)Q0 . 
Finally, limkuv(dI f dJ) N (WI f WJ) lim a(T) Nkuv (WI f WJ).               m 
Claim 5.Claim 5.Claim 5.Claim 5.     If  no(p)qo(p) Q WJ, define TSjwxk N Zyz{ZT|dS(TS)}; then TIjwxk K TJjwxk. 
Proof:Proof:Proof:Proof: From Claim 3, Zyz{ZT|dS(TS)} is the solution to the first order condition 
hjc(kc)hkc N aO(TS)WS-XO(TS) N 0  or no(kc)qo(kc) N WS . Define  ~(TS)N no(kc)qo(kc)  . Note that h���(�c)��(�c)�hkc L 0 , 
hence the inverse of ~(TS) exists and is also monotonically increasing function. Define ~UI(.)N�(.); thus, Zyz{ZT|dS(TS)} N  �(WS). By assumption WIK WJ and by construction �(.) is a monotonically increasing function, hence TIjwxk K TJjwxk.              m 
Claim 6.Claim 6.Claim 6.Claim 6.   max dI K  max dJ. ProofProofProofProof::::    From Claim 5, max dS N a(�(WS))WS f X(�(WS)). Hence  hwxkjchbc N ao(. )�o(. )WS �
a(. ) f Xo(. )�o(. ) N �o(. )�ao(. )WS f Xo(. )� �  a(. ) N a(. ) L 0  as �ao(. )WS f Xo(. )� N 0 for maximization and WS L 0 for � N 1, 2 . Given WIK WJ, we confirm max dI K  max dJ.             m 
Claim 7.Claim 7.Claim 7.Claim 7.   Define T�S N �TS � 0: no(p)qo(p) Q  WS & dS(TS) N 0� i.e., T�S is the unique positive bid by 
bidder t  (Claim 3) for which his/her winning payoff is zero. 5 Then  T�I L T�J. Proof:Proof:Proof:Proof: From Claim 4, (dI(T) f dJ(T)) L 0 � T L 0  and by definition  dS(T�S) N 0 . Consequently, dI(T�J) L dJ(T�J) N 0 N dI(T�I).  Hence, the inverted U-shape of winning curve  dI(. ) (Claim 3) confirms T�I L T�J.                       m   
 Claims 1 through 7 characterize the shape of the winning curves. It is trivial to check the shape of the losing curve. Given the shapes of the curves, below we characterize the 
                                                           
5
 x�^ is defined as the ‘reach of player t’ in Siegel (2009 a, b) 
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equilibria of the game.  Subsections 2.3 and 2.4 deal with the initial asymmetric value case (WIL WJ) whereas Subsection 2.5 deals with the initial common value case (WIN WJ).  
2.3 2.3 2.3 2.3 Characterization of EquilibriaCharacterization of EquilibriaCharacterization of EquilibriaCharacterization of Equilibria    under Initial Asymmetric under Initial Asymmetric under Initial Asymmetric under Initial Asymmetric Halues:Halues:Halues:Halues:    Pure Strategy CasesPure Strategy CasesPure Strategy CasesPure Strategy Cases    
Lemma 1.Lemma 1.Lemma 1.Lemma 1.     An equilibrium in pure strategies for the game g(1,2) exists under condition (i) �no(p)qo(p) K WI�  or (ii) � no(p)qo(p) � �WJ, WI)�  or (iii)  �no(p)qo(p) Q  WJ and (TIjwxk K T�J)�  . Moreover, 
under condition (i) there exist unique equilibrium strategies (TI�, TJ�) N (0,0), whereas under condition (ii) or (iii) the unique equilibrium strategies are (TI�, TJ�) N (TIjwxk, 0). Proof:Proof:Proof:Proof: (i)(i)(i)(i) If  no(p)qo(p) K WI then by Claim 2 the winning payoffs are always non-positive and 
bidding any positive amount with positive probability ensures loss. So, in equilibrium both the bidders bid zero, i.e., TI� N TJ� N 0.  (ii)(ii)(ii)(ii) If  no(p)qo(p) � �WJ, WI) then bidder 2’s winning payoff is always non-positive and following the 
same logic as in (i), TJ� N 0. Bidder 1’s winning curve is inverted U-shaped and given bidder 2 bids 0 with certainty, bidder 1 maximizes its payoff by always bidding TI� N Zyz{ZT|dI(TI)} N TIjwxk L 0. 
        Figure 2.1 PSNE case (i)                                                        Figure 2.2 PSNE case (ii)  
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(iii)(iii)(iii)(iii)    If no(p)qo(p) Q  WJ , then in some sufficiently small neighborhood of zero bid, the winning 
payoff is positive for both players. When (TIjwxk K T�J) then knowing bidder 2 never bids on or over T�J (as that will result in a negative payoff whereas a zero-bid ensures a zero payoff), any bid between T�J and T�I gives a sure positive payoff to bidder 1. The sure payoff reflected by the winning curve is maximized at TIjwxk. Hence, bidder 1 bids at TI� NTIjwxk L T�J with certainty. Knowing this, bidder 2 bids TJ� N0 with certainty.                     m 
LemmaLemmaLemmaLemma    2222. If no(p)qo(p) Q  WJ and (TIjwxk Q T�J)  then there exists no pure strategy Nash 
equilibrium for the game g(1,2).6 Proof: Proof: Proof: Proof: A pure strategy Nash equilibrium in this game is a set of bids �TI�, TJ�� where bidder t cannot increase its payoff by deviating from TS� given rival bid TUS� . Suppose there exists PSNE for the game g(1,2) under the stated condition in Lemma 2. Also let �T�S� be the set of maximum bids among the PSNE bids. Therefore, either �T�S� is a singleton set or  T�I N T�J. 
If �T�S� is singleton and RS(T�S) L 0 then bidder 1 is the highest bidder as bidder 2 never bids more than T�J Q T�I  and bidding T�J  gives bidder 1 a sure payoff of dI(T�J) . Because TIjwxk Q T�J, bidding more than T�J decreases payoff for bidder 1. But if bidder 1 bids T�J then the best response for bidder 2 would be to bid zero. Consequently, if bidder 2 bids zero, then the best response for bidder 1 is to bid at TIjwxk. As TIjwxk Q T�J bidder 2 can overbid bidder 1 and make a positive payoff by bidding TIjwxk Q TJ Q T�J(by the continuity of the payoff functions). Hence there exists no pure strategy Nash equilibrium when �T�S� is singleton and RS(T�S) L 0.  
If �T�S� is singleton and RS(T�S) N 0 then by construction the highest bidder, say bidder t, bids at T�S. Bidder 1 never bids at T�I as placing a bid TI � (T�J, T�I) strictly increases payoff. Bidder 2 also never bids at T�J as bidder 1 can always place a bid (T�I � �) where � L 0 and that will result in negative payoff for bidder 2. So, there exists no PSNE in this case. 
If �T�S� is singleton and RS(T�S) Q 0 then the highest bidder can always make a zero payoff by bidding zero; implying no PSNE. Therefore, there exists no PSNE with �T�S� being singleton.  
If �T�S� is not singleton and T�I N T�J N 0 then bidder t  can improve payoff by placing a bid of TSjwxk. If T�I N T�J � 0 then T�S Q T�J as placing a bid more than or equal to  T�J ensures loss 
                                                           
6
 We prove the non-existence of PSNE by following the same procedure as in Kaplan et al. (2003), however, in their structure the payoff is monotonically decreasing in own bids. 
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for bidder 2 (recall the tie breaking rule). Finally, when T�S � (0, T�J) then from the tie breaking rule RI(T�I) N (a(T�I)WI f X(T�I))L0 and RJ(T�J) N fX(T�J) Q 0. But bidder 2 can always bid (T�I � �) (where � L 0) and earn RJ(T�I � �) N dJ(T�I � �)L0LN fX(T�J). Hence, again, there exists no PSNE when �T�S� is not singleton.               m 
Proposition 1Proposition 1Proposition 1Proposition 1.  A pure strategy equilibrium for the game g(1,2) exists if and only if any of the conditions (i) �no(p)qo(p) K WI� or (ii) � no(p)qo(p) � �WJ, WI)� or (iii)  �no(p)qo(p) Q  WJ and (TIjwxk K T�J)� 
holds. Moreover, under condition (i) there exist unique equilibrium strategies (TI�, TJ�) N(0,0)  whereas under condition (ii) or (iii) the unique equilibrium strategies are (TI�, TJ�) N (TIjwxk, 0). Proof Proof Proof Proof :::: Combination of Lemma 1 and Lemma 2 proves Proposition 1.              m 

It is important to note that unlike the standard all-pay auction results as in Baye et al (1996) or Siegel (2009a, b), under the non-monotonic payoff case we might end up attaining pure strategy Nash equilibria. More interestingly, here the payoff characterization results of Siegel (2009a) and strategy characterization results of Siegel (2009b) do not hold.  
2.2.2.2.4444    Characterization of EquilibriaCharacterization of EquilibriaCharacterization of EquilibriaCharacterization of Equilibria    under Initial Asymmetric Haluesunder Initial Asymmetric Haluesunder Initial Asymmetric Haluesunder Initial Asymmetric Halues: : : : Mixed Strategy CaseMixed Strategy CaseMixed Strategy CaseMixed Strategy Case    

Under this section we discuss only the case of ��o(p)�o(p) Q  HJ and (xI���� Q x�J)�, i.e., the 
case with no PSNE. We fully characterize the mixed strategy Nash equilibrium for the game g(1,2) under this condition. This, in turn, proves the existence of equilibrium in mixed strategies that also comes directly from theorem 5 of Dasgupta and Maskin (1986).  We define the No-arbitrage Bid Function of bidder t  to keep bidder -t  indifferent as �S(T). 
Figure 3. No pure strategy equilibrium case 
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Lemma 3Lemma 3Lemma 3Lemma 3....  Denote ��S N � ¡�T: �S(T) N 1� and �S N �¢£�T: �S(T) N 0�, then 0 ¤ �S ¤ ��S ¤ T�S. Proof:Proof:Proof:Proof:  0 ¤ �S, as by construction bid cannot be negative. �S ¤ ��S comes from the definitions of �S and ��S and strict inequality holds if there is no pure strategy for any of the bidders. By definition ��S N � ¡�T: �S(T) N 1�. If bidder t  places a mass on any bid more than T�S then it will make a sure negative payoff for that mass and as a result the expected payoff will fall. He can always increase the expected payoff by placing that mass at 0. ¥ ��S ¤ T�S.               m 
Lemma Lemma Lemma Lemma 4444....         ��S ¤ T�J. Proof:Proof:Proof:Proof:  From Lemma 3, ��J ¤ T�J. At T�J bidder 1 earns a sure payoff of dI(T�J). 7 No PSNE case implies TIjwxk Q T�J,  hence dI(. ) is falling at T�J and placing any bid above T�J with positive probability strictly reduces expected payoff for bidder 1. So, bidder 1 never places a bid above T�J, i. e. , ��I ¤ T�J as well.                        m 
Lemma Lemma Lemma Lemma 5555....  Define TIo N �T � T�J ¦ dI(T) N dI(T�J)�, then TIo Q TIjwxk(Q T�J).     Proof:Proof:Proof:Proof:  From Claim 3, dI(T) curve is inverted U shaped and from the definition of TIo , dI(TIo ) N dI(T�J). Given the stated condition of no PSNE TIjwxk Q T�J , we must have TIo Q TIjwxk. Note that the strict concavity property of a(. ) function ensures a unique TIo  .  m 
Lemma Lemma Lemma Lemma 6666....  �I K TIo .                Proof:Proof:Proof:Proof:  Bidder 1 can always bid T�J to earn a sure payoff of dI(T�J). TIo Q TIjwxk (Lemma 5); i.e., at TIo  , dI(. ) is increasing. Hence, if bidder 1 bids TI Q TIo , then dI(TI) Q dI(TIo ) NdI(T�J). i.e., even winning the bid provides less payoff to bidder 1 than the sure payoff. Thus, bidder 1 never places a positive probability to bid less than TIo  i.e., �I K TIo .                 m 
Lemma Lemma Lemma Lemma 7777....  Support for 2 � �0, �TIo , T�J�� .                Proof:Proof:Proof:Proof:  From Lemma 6, �I K TIo , i.e., bidder 1 never places a bid less than TIo  with positive probability. Knowing this, bidder 2 also never places a positive probability of bidding in (0, TIo ) as that ensures a negative payoff. So, bidder 2 places positive probability of bidding in either 0 or between �TIo , T�J�, i.e., bidder 2’s support is in the set �0, �TIo , T�J��.                         m 
Lemma Lemma Lemma Lemma 8888....  The possible equilibrium payoff of bidder 1, RI� K  dI(T�J) L 0 and the possible equilibrium payoff of bidder 2, RJ� K  0. 

                                                           
7
 WI(x�J) is the ‘power’ of bidder 1 as in Siegel (2009 a, b).  
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Proof:Proof:Proof:Proof:  The sure payoff of bidder 1 is dI(T�J) L 0. Therefore, if the expected payoff of bidder 1 is not at least as high as dI(T�J), then it is not an equilibrium. So, RI� K dI(T�J) L 0.  Similarly, bidder 2 can always earn a zero payoff by not submitting any bid, hence RJ� K 0. m  
Lemma Lemma Lemma Lemma 9999....     §� � �1,2� such that �S ¤ �US and �US|�S} N 0. Proof:Proof:Proof:Proof:  Suppose not, i.e., ¨� � �1,2�: �S ¤ �US & �US|�S} N 0 . Then �� � �1,2�  either (i) �S ¤ �US & �US|�S} L 0 or (ii) �S L �US & �US|�S} N 0 or (iii) �S L �US & �US|�S} L 0. Cases (i) and (ii) cannot be true from the definition of �S and case (iii) cannot be simultaneously true for bidder 1 and 2. Hence we arrive at a contradiction. In consequence,  §� � �1,2� such that �S ¤ �US and �US|�S} N 0.                                  m 
Lemma Lemma Lemma Lemma 10101010....     §© � �1,2� �. �. Rª� N0. Proof:Proof:Proof:Proof:  Suppose not. Then at �ª, Rª� s«¬ L 0 i.e., �ª L 0 (as RI� L 0 and RJ� K 0 from Lemma 8). But from Lemma 9, if �S ¤ �US  then �S|�US} N 0  i.e., Rª� s«¬ Q 0  for some © � �1,2� : a contradiction. Hence, we must have some © � �1,2�  such that Rª�N0.                                          m 
Lemma Lemma Lemma Lemma 11111111.... RJ�N0 i.e., kN2 and �JN0. Proof:Proof:Proof:Proof:  Combining Lemma 8: RI� L 0 and Lemma 10: §© � �1,2� �. �. Rª� N0 we conclude RJ�N0. Combining Lemma 9 with RJ�N0 and the fact that bidder 1 must win with positive probability over the whole support to attain RI� L 0 we must have �JN0.             m 
Lemma Lemma Lemma Lemma 11112222....        ��I N T�J and RI� N dI(T�J). Proof:Proof:Proof:Proof:  From Lemma 4, ��I ¤ T�J. Suppose ��I Q T�J then bidding any TJ � (��I, T�J) ensures bidder 2 a strictly positive payoff; which is a contradiction with Lemma 11. Also, ��I N T�J implies RI(��I) N dI(T�J). Hence, in equilibrium RI� N dI(T�J) throughout the support.          m 
Lemma 1Lemma 1Lemma 1Lemma 13333....     ��J N T�J. Proof:Proof:Proof:Proof:  From Lemma 4, ��J ¤ T�J and from Lemma 12, ��I N T�J. Suppose ��J Q T�J then because dI(. ) is decreasing at T�J , placing any bid TI � ���J, T�J)  ensures bidder 1 a sure payoff of dI(TI) L dI(T�J): a contradiction with Lemma 12. Hence ��J N T�J.                                             m 
Lemma 1Lemma 1Lemma 1Lemma 14444. . . . �J|�I} N �J(0). Proof:Proof:Proof:Proof:  Suppose not. Then bidder 2 places a positive probability of bidding in the semi-open interval (0, �I�.  But that ensures a negative payoff which is contradictory to Lemma 11.      m 
Lemma 1Lemma 1Lemma 1Lemma 15555.... If S(�) is the amount of mass bidder t  places at point s, then J(0) � (0,1). 
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Proof:Proof:Proof:Proof:  From Lemma 14, Prob|TJ Q �I} N J(0). ¥ RI|�I} N J(0)a|�I}WI f X(�I).  Hence, if J(0) N 0 then RI|�I} N fX(�I) Q dI(T�J) and if J(0) N 1 then bidding any TI � (TIo , T�J) ensures bidder 1 a payoff  dI(TI) L dI(TIo ) N dI(T�J) both of which are contradictory with Lemma 12. ¥ J(0) � (0,1).                               m 
Lemma 1Lemma 1Lemma 1Lemma 16666....    I|�I} � (0,1).    Proof:Proof:Proof:Proof:  From Lemma 6, �I L 0 and from Lemma 15, J(0) L 0. If I|�I} N 0, then at �I bidder 2 loses with certainty and payoff of bidder 2 becomes – X(�I) Q 0; and if I|�I} N 1 then for any small � L 0, bidding |�I � �} gives bidder 2 a sure payoff of dJ|�I � �} L 0: both of which are contradictory with Lemma 11.  ¥ I|�I} � (0,1).            m 
 Lemma 1Lemma 1Lemma 1Lemma 17777.... A No-arbitrage Bid Function (NBF) of bidder 1 to keep bidder 2 indifferent is: �I(�) N n(«)biq(«) , and a No-arbitrage Bid Function of bidder 2 to keep bidder 1 indifferent is: 
�J(�) N n(«)®jt(k�i)btq(«)  .    
Proof:Proof:Proof:Proof:  To keep bidder 1 indifferent, bidder 2 places the bid function �J(. ) in a way such that �J(�)WIa(�) f X(�) N RI� N dI(T�J).  Solving for �J(. ) yields the NBF of bidder 2:  �J(�) N n(«)®jt(k�i)btq(«) .  Similarly, bidder 1 places the bid function �I(. ) in a way such that 
�I(�)WJa(�) f X(�) N RJ� N 0. Solving for �I(. ) yields NBF of bidder 2 �I(�) N n(«)biq(«).            m 
Lemma 1Lemma 1Lemma 1Lemma 18888....    lim«up�I(�), �I(TIo ), �I(T�J) Q 1....    
Proof:Proof:Proof:Proof:  Using L’Hospital rule: lim«up�I(�) N ¯°�±u²³�(±)³±¯°�±u²³|´i�(±)}³± N n�(p)biqo(p) Q 1 as  n�(p)qo(p) Q WJ. 
Also, �I(TIo ) N n(kt� )biq|kt� } N n(kt� )µbiq|kt� }Un(kt� )¶®n(kt� ) N kt�jt|kt� }®n(kt� ) Q 1 as dI(TIo ) N dI(T�J) L 0. 
And �I(T�J) N n(k�i)biq(k�i) N n(k�i)�biq(k�i)Un(k�i)�®n(k�i) N n(k�i)jt(k�i)®n(k�i) Q1 as dI(T�J) L 0.                            m 
Lemma 1Lemma 1Lemma 1Lemma 19999....    �I(�) is monotonically increasing in the closed interval �TIo , T�J�. 
Proof:Proof:Proof:Proof:        From Lemma 18, I·t|kt� } N jt|kt� }®n(kt� )n(kt� ) N 1 � jt(k�i)n(kt� ) , and similarly I·t(k�i) N 1 � jt(k�i)n(k�i) .  
We know dI(TIo ) N dI(T�J).  And T�J L TIo implies X(T�J) L X(TIo ) , hence we obtain I·t|kt� } L I·t(k�i) , i.e., �I(T�J) L �I(TIo ). If there exists no extreme point of �I(. ) within the open 
interval (TIo , T�J) then it means that �I(�) is monotonically increasing in (TIo , T�J). In any 
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extreme point of �I(�), ¸¹t(º)¸º N »i�(º)��(º)U�(º)»i��(º)�»i�(º)�i N 0, i.e., �G(s)Co(s) f C(s)Go(s)� N 0. 
But, �G(s)Co(s) f C(s)Go(s)� is a strictly upward rising curve from origin.8 Hence there is no solution except origin for �G(s)Co(s) f C(s)Go(s)� N 0 , i.e., there exists no extreme point for �I(�) within the interval(TIo , T�J). Thus, �I(�) is monotonically increasing in �TIo , T�J�.              m 
Figure 4. No-arbitrage Bid Function of the bidders  
 
    
    
    
    
    
                                                             
    
Lemma Lemma Lemma Lemma 20202020....    �J(�) starts from infinity, monotonically decreases to 1 at � N TIo , reaches unique minimum within the open interval (TIo , T�J) and then monotonically increases to 1 at � N T�J. 
Proof:Proof:Proof:Proof:    From Lemma 17,     �J(�) N n(«)®jt(k�i)btq(«) . ¥ �J(0) N ¼ . And �J(TIo ) N n(kt� )®jt(k�i)btq|kt� } N
n(kt� )®jt|kt� }btq|kt� } N n(kt� )®µbtq|kt� }Un(kt� )¶btq|kt� } N 1. Also, �J(T�J) N n(k�i)®jt(k�i)btq(k�i) N n(k�i)®�btq(k�i)Un(k�i)�btq(k�i) N 1. 
If we prove that �J(. ) is decreasing at TIo  then there will be at least one minimum point of 
�J(. ) in the open interval (TIo , T�J). Note that ¸¹i(º)¸º N btq(«)n�(«)U�n(«)®jt(k�i)�btq�(«)�btq(«)�i . Hence 
½�z  ¾¸¹i(º)¸º ¿ N ½�z |a(�)Xo(�) f �X(�) � dI(T�J)�ao(�)} . At point TIo , it can be shown that 
½�z  ¾¸¹i(º)¸º skt� ¿ N ½�z |Xo(TIo ) f WIaO(TIo )} N ½�z  ¾f ¸�t(º)¸º skt� ¿ Q 0  as WI(. )  is upward rising at point  TIo  (Claim 3 and Lemma 5). Thus �J(. ) is decreasing at TIo  and consequently, there exists at least one minimum point of �J(. ) in the open interval (TIo , T�J).  
                                                           

8
  �G(s)Co(s) f C(s)Go(s)�sp N 0, and ¸��(º)��(º)U�(º)��(º)�¸º N G(s)Cl(s) f C(s)Gl(s) L 0  �s L 0. 

TIo  T�J 
TS TJwÀÁ 

O 

1 

�I 

�J 

�S 
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Now, if we show that the minimum is unique then we will prove that (i) �J(. ) decreases from infinity to 1 at TIo  and (ii) �J(. ) the minimum in the interval (TIo , T�J) . At a minimum, 
¸¹i(º)¸º N 0, which implies ¾q(«)n�(«)Un(«)q�(«)¿q�(«) N dI(T�J). Here RHS is a positive constant 
whereas LHS is an upward rising curve from origin.9 Thus there exists unique solution for 
¾q(«)n�(«)Un(«)q�(«)¿q�(«) N dI(T�J) , i.e., there exists unique minimum for �J(. ).  Because 
�J(TIo ) N �J(T�J) N 1 and �J(�) is decreasing at TIo , ¥ argmin|�J(�)} N TJwÀÁ � (TIo , T�J).         m 
         It is clear that the No-arbitrage Bid Functions are not strategies. In particular, FJ(s) is not nondecreasing. However, following Osborne and Pitchick (1986) and Deneckere and Kovenock (1996), the NBFs remain the basis for the construction of equilibrium. Let  IFJ(s) N Inf�Âº|FJ(x)}   be the nondecreasing floor of FJ(s). IFJ(s) equals FJ(s) except the 
interval�0, xJ�°Ã). Then the strategy ÄJ(s) N ÅIFJ(s)  for (s Q x�J)1           for (s K x�J) ]  is an equilibrium strategy 
for bidder 2. Note that ÄJ(s) is nondecreasing, non-negative, right continuous and is less than or equal to 1 for all s; hence, ÄJ(s) is a strategy. When bidder 2 does not bid according to ÄJ(s), it earns a strictly negative payoff . Given ÄJ, if bidder 1 were indifferent between all bids in the interval (0, x�J�, then FIwould be an equilibrium strategy, since it makes bidder 2 indifferent between all prices in the interval, and earns a strictly lower payoff otherwise. However, since ÄJ is strictly less than FJ over the interval �0, xJ�°Ã), bidder 1 will attach zero probability to those set of bids. Since bidder 1 must set the strategy that keeps bidder 2 indifferent in the points of support, it will place a mass point at xJ�°Ã, the size of which equals FJ|xJ�°Ã}. Finally, bidder 1 will place zero probability to bid more than x�J, hence it must place another mass point at x�J with a size|1 f FJ(x�J)} . Hence the strategy of 
bidder 1 is:  ÄI(s) N Æ 0            for (s Q x�J) and|FJ(s) L ÄJ(s)}  FI(s)   for (s Q x�J) and|FJ(s) N ÄJ(s)}  1            for (s K x�J)                                            ].  It is also easy to check 
that ÄI(s) is nondecreasing, non-negative, right continuous, less than or equal to 1 for all s; and hence, is a strategy.  In the following proposition we show that ÄI(x)  and ÄJ(x)constitute the unique mixed strategy Nash equilibrium of this game. 
                                                           

9
 Note that ¾q(«)n�(«)Un(«)q�(«)¿q�(«) sp N 0 and hÇ¾q(«)n�(«)Un(«)q�(«)¿/q�(«)Èh« N q(«)Éq�(«)n��(«)Un�(«)q��(«)Ê�q�(«)�i L 0 
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PropositiPropositiPropositiProposition 3.on 3.on 3.on 3. The unique mixed strategy Nash equilibrium of the game g(1,2)  is characterized by the CDF pair ËI�(�) and ËJ�(�): For  bidder 1 
                                       ËI�(�) N `0                  ¡�y � Q TJwÀÁ                n(«)biq(«)           ¡�y � � É]TJwÀÁ, T�J}       ]1                  ¡�y � K T�J                     ]   
i.e., there are two atoms: at TJwÀÁ with a mass of size I|TJwÀÁ} N n(kiÌÍÎ)biq|kiÌÍÎ} and at T�J with a 
mass of size I(T�J) N ¾ ji(k�i)biq(k�i)¿.  And for  bidder 2 

 ËJ�(�) N
ÏÐÑ
ÐÒ X(TJwÀÁ) � dI(T�J)WIa|TJwÀÁ}       ¡�y � ¤ TJwÀÁ       X(�) � dI(T�J)WIa(�)               ¡�y � � ÉTJwÀÁ, T�JÊ  1                                        ¡�y � K T�J               

] 
i.e., there is an atom at 0 with the size of the mass: J(0) N n(kiÌÍÎ)®ji(k�i)btq|kiÌÍÎ} . 
Proof:Proof:Proof:Proof:  We prove this proposition into two parts. First, we conclude that the pair �ËI(�), ËJ(�)� indeed characterizes an equilibrium. Then we show that the equilibrium is unique.  

It is easy to show that ËI�(�) N ÄI(s) and ËJ�(�) N ÄI(s). Therefore, from the previous discussion, ËI�(�)and ËJ�(�) are strategies and are also best response to each other. Hence, the strategy pair �ËI�(�)ËJ�(�)� characterize a mixed strategy Nash equilibrium for the game g(1,2). The diagrammatic representation of the equilibrium is described in Figure 5.  
Figure 5. Equilibrium distribution functions      
    
    
    
    
    

T�J TS TJwÀÁ 
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Now, if we show that the equilibrium support is unique, then the uniqueness of the equilibrium will also be proved. It is clear that the supports of equilibrium distribution coincide, and are equal to the interval ÉTJwÀÁ, T�JÊ. In addition, bidder 2 has a masspoint at 0. If s � Support(ËS�) then for any F^ � ËS�,  Ó^(F^(s, ÓU^� )) Q Ó�̂. Also, if Ó^(F^(s, ÓU^� )) L Ó�̂, then s Ô Support(ËS�) . Hence the support is unique and so is the equilibrium mixed strategies.  m 
There are two important features of the equilibrium. First, unlike the standard all-pay auction equilibrium where the high value bidder places no atom, the bidder places two atoms at the two extreme points in its support. Also, the low value bidder’s support has a discontinuous point at zero. Although the equilibrium distributions are different from the standard all-pay auction, the equilibrium payoffs of the bidders are similar to the standard case and resemble the payoff characterization results of Siegel (2009a). However, because of the possibility of no-reward, the expected payoff is lower than that of the standard case. 

2.52.52.52.5. . . . Characterization of EquilibriaCharacterization of EquilibriaCharacterization of EquilibriaCharacterization of Equilibria    under Initial Common Halue under Initial Common Halue under Initial Common Halue under Initial Common Halue (H(H(H(H1111    N HN HN HN H2222    N H)N H)N H)N H)    CaseCaseCaseCase        
In the case of initial common value all-pay auction with non-monotonic payoff, define x� N �x � 0: �o(p)��(p) Q W  & W(x) N 0�. It can easily be shown that for �o(p)��(p) K H there exists 

unique PSNE (0,0). Following similar analyses as in section 2.2 to 2.4, under the case  �o(p)��(p) Q W we derive the following proposition. The proof is obvious and is omitted. 
PropositiPropositiPropositiProposition 4on 4on 4on 4.... CDFs of the unique mixed strategy Nash equilibrium strategies Ë(�) for the 
initial common value case of the game g(1,2) is Ä�(�) N

ÏÐÑ
ÐÒ��(p)/��(p)»       ¡�y � N 0         n(«)bq(«)             ¡�y � � (0, T��1                  ¡�y � K T�      

]   
Figure 6.1 Common Halue Payoff functions              Figure 6.2 Common Halue Equilibrium CDFs        
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i.e., the common support is �0, x�� and unlike the standard all pay auction results, in the equilibrium both the bidders place the same amount of mass ¾ �o(p)»�o(p)¿ at 0. Both bidders earn 
zero equilibrium payoffs. 

In the standard 2-bidder all-pay auctions, because the winning payoff is positive at a zero-bid and is monotonically decreasing, bidders do not place atoms at the same point in equilibrium. For example, under Baye et al (1996) structure, if both bidders place mass points at zero, then shifting mass to a positive bid is strictly dominant strategy for both the bidders. In the current case, the winning curve starts from the origin and is continuous. Hence, if bidder -t shifts a mass of  Õ L 0 above zero, then its marginal payoff is zero.  
    2.2.2.2.6666. . . . Overall Characterization of EquilibriaOverall Characterization of EquilibriaOverall Characterization of EquilibriaOverall Characterization of Equilibria    
TheoremTheoremTheoremTheorem. Propositions 1 to 4 fully characterize the equilibria for the all-pay auction with non-monotonic payoff described by the game g(1,2). 
 3333. Discussions. Discussions. Discussions. Discussions        

This study is one of the first attempts to analyze the all-pay auctions with bid-dependent prize schemes, where the winning payoff is not monotonic. We fully characterize the equilibrium and show that the equilibrium strategies are strikingly different from the standard all-pay auction results. The most useful results are the conditions for the existence of pure strategy equilibria, the existence of multiple mass points in the initial high value bidder’s equilibrium strategy, and the common mass point in the initial common value case. The results indicate that under pure strategy equilibria, the payoff characterization results of Siegel (2009a) do not hold. It also indicates that the monotonocity of the payoff is not necessary for the existence of equilibrium. If the winning payoff eventually becomes negative for ever, then it is sufficient to ensure equilibrium in this structure. 
This area is of high interest as this resembles real life situations such as patent race, procurement auction etc. The obvious ideas for further research would be to extend the model to n-bidders, to analyze the effects of change in initial prize value, using a more generic G(.) function, to show the effects of caps on bidding and to design experiments.  
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